Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A global model for the uptake of atmospheric hydrogen by soils

Identifieur interne : 005736 ( Main/Exploration ); précédent : 005735; suivant : 005737

A global model for the uptake of atmospheric hydrogen by soils

Auteurs : C. Morfopoulos [Royaume-Uni] ; P. N. Foster [Royaume-Uni] ; P. Friedlingstein [Royaume-Uni] ; P. Bousquet [France] ; I. C. Prentice [Royaume-Uni, Australie]

Source :

RBID : ISTEX:002B9FCAA688A5B3E72417AA8A3C3E26603364BB

Descripteurs français

English descriptors

Abstract

A simple process‐based model for the consumption of atmospheric hydrogen (H2) has been developed. The model includes a description of diffusion and biological processes which together control H2flux into the soil. The model was incorporated into the LPJ‐WHyMe Dynamic Global Vegetation Model, and used to simulate H2 fluxes over the 1988–2006 period. The model results have been confronted with field and laboratory measurements. The model reproduces observed seasonal cycles of H2 uptake at different sites and shows a realistic sensitivity to changes in soil temperature and soil water content in comparisons with field and laboratory measurements. A recent study, based on 3D atmospheric model inversion, found an increase of the global H2 sink from soils, with a trend of −0.77 Tg a−2 for the 1992–2004 period (fluxes are negative as soils act as a sink for atmospheric H2). For the same period, however, our process‐based model calculates a trend of only −0.04 Tg a−2. Even when forced with drastic changes in soil water content, soil temperature and snow cover depth, our model is unable to reproduce the trend found in the inversion‐based study, questioning the realism of such a large trend.

Url:
DOI: 10.1029/2011GB004248


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A global model for the uptake of atmospheric hydrogen by soils</title>
<author>
<name sortKey="Morfopoulos, C" sort="Morfopoulos, C" uniqKey="Morfopoulos C" first="C." last="Morfopoulos">C. Morfopoulos</name>
</author>
<author>
<name sortKey="Foster, P N" sort="Foster, P N" uniqKey="Foster P" first="P. N." last="Foster">P. N. Foster</name>
</author>
<author>
<name sortKey="Friedlingstein, P" sort="Friedlingstein, P" uniqKey="Friedlingstein P" first="P." last="Friedlingstein">P. Friedlingstein</name>
</author>
<author>
<name sortKey="Bousquet, P" sort="Bousquet, P" uniqKey="Bousquet P" first="P." last="Bousquet">P. Bousquet</name>
</author>
<author>
<name sortKey="Prentice, I C" sort="Prentice, I C" uniqKey="Prentice I" first="I. C." last="Prentice">I. C. Prentice</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:002B9FCAA688A5B3E72417AA8A3C3E26603364BB</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1029/2011GB004248</idno>
<idno type="url">https://api.istex.fr/document/002B9FCAA688A5B3E72417AA8A3C3E26603364BB/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000003</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000003</idno>
<idno type="wicri:Area/Istex/Curation">000003</idno>
<idno type="wicri:Area/Istex/Checkpoint">000661</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000661</idno>
<idno type="wicri:doubleKey">0886-6236:2012:Morfopoulos C:a:global:model</idno>
<idno type="wicri:Area/Main/Merge">005A03</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:12-0426403</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000F02</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005019</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001412</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001412</idno>
<idno type="wicri:doubleKey">0886-6236:2012:Morfopoulos C:a:global:model</idno>
<idno type="wicri:Area/Main/Merge">006247</idno>
<idno type="wicri:Area/Main/Curation">005736</idno>
<idno type="wicri:Area/Main/Exploration">005736</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A global model for the uptake of atmospheric hydrogen by soils</title>
<author>
<name sortKey="Morfopoulos, C" sort="Morfopoulos, C" uniqKey="Morfopoulos C" first="C." last="Morfopoulos">C. Morfopoulos</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Biology, Imperial College, Ascot</wicri:regionArea>
<wicri:noRegion>Ascot</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Foster, P N" sort="Foster, P N" uniqKey="Foster P" first="P. N." last="Foster">P. N. Foster</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Earth Sciences, University of Bristol, Bristol</wicri:regionArea>
<wicri:noRegion>Bristol</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Friedlingstein, P" sort="Friedlingstein, P" uniqKey="Friedlingstein P" first="P." last="Friedlingstein">P. Friedlingstein</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter</wicri:regionArea>
<wicri:noRegion>Exeter</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bousquet, P" sort="Bousquet, P" uniqKey="Bousquet P" first="P." last="Bousquet">P. Bousquet</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Climat et de l'Environnement, CEA, Gif-sur-Yvette</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Prentice, I C" sort="Prentice, I C" uniqKey="Prentice I" first="I. C." last="Prentice">I. C. Prentice</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Division of Biology, Imperial College, Ascot</wicri:regionArea>
<wicri:noRegion>Ascot</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Biological Sciences, Macquarie University, North Ryde, New South Wales</wicri:regionArea>
<wicri:noRegion>New South Wales</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Global Biogeochemical Cycles</title>
<title level="j" type="alt">GLOBAL BIOGEOCHEMICAL CYCLES</title>
<idno type="ISSN">0886-6236</idno>
<idno type="eISSN">1944-9224</idno>
<imprint>
<biblScope unit="vol">26</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page-count">13</biblScope>
<date type="published" when="2012-09">2012-09</date>
</imprint>
<idno type="ISSN">0886-6236</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0886-6236</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Artificial increase</term>
<term>Atmospheric hydrogen</term>
<term>Atmospheric inversion</term>
<term>Atmospheric methane</term>
<term>Auxiliary material</term>
<term>Biological oxidation</term>
<term>Biological processes</term>
<term>Biological uptake</term>
<term>Bousquet</term>
<term>Climate change</term>
<term>Climatic data</term>
<term>Climatic inputs</term>
<term>Corresponding grid cells</term>
<term>Deposition</term>
<term>Deposition velocities</term>
<term>Deposition velocity</term>
<term>Different scenarios</term>
<term>Downey</term>
<term>Ehhalt</term>
<term>Field measurements</term>
<term>Fossil fuel combustion</term>
<term>Full model sensitivity</term>
<term>Geographical distribution</term>
<term>Geophys</term>
<term>Global</term>
<term>Global biogeochem</term>
<term>Global distribution</term>
<term>Global estimate</term>
<term>Global model</term>
<term>Global scale</term>
<term>Global soil</term>
<term>Global soil uptake</term>
<term>Global trend</term>
<term>Global uptake</term>
<term>Good agreement</term>
<term>Grid</term>
<term>Grid cell</term>
<term>Grid cells</term>
<term>Heidelberg site</term>
<term>Hydrogen economy</term>
<term>Imperial college</term>
<term>Inactive layer</term>
<term>Interannual variability</term>
<term>Inversion</term>
<term>Inversion method</term>
<term>January</term>
<term>July</term>
<term>Kmax</term>
<term>Laboratory conditions</term>
<term>Laboratory experiments</term>
<term>Laboratory measurements</term>
<term>Laboratory study</term>
<term>Lallo</term>
<term>Large range</term>
<term>Loamy sand soil type</term>
<term>Loppi</term>
<term>Loppi site</term>
<term>Lower values</term>
<term>Maximum uptake</term>
<term>Methane</term>
<term>Mineral soil</term>
<term>Minimum uptake</term>
<term>Model outputs</term>
<term>Model results</term>
<term>Model simulations</term>
<term>Molecular hydrogen</term>
<term>Molecular hydrogen uptake</term>
<term>Morfopoulos</term>
<term>Northern hemisphere</term>
<term>Northern regions</term>
<term>Other land areas</term>
<term>Period soil water</term>
<term>Personal communication</term>
<term>Porosity</term>
<term>Primary productivity</term>
<term>Recent study</term>
<term>Region partition</term>
<term>Same period</term>
<term>Same range</term>
<term>Scenario</term>
<term>Seasonal cycle</term>
<term>Seasonal variation</term>
<term>Seasonal variations</term>
<term>Sensitivity test</term>
<term>Sensitivity tests</term>
<term>Simple model</term>
<term>Simulation</term>
<term>Smith downey</term>
<term>Snow cover</term>
<term>Snow depth</term>
<term>Soil consumption</term>
<term>Soil model</term>
<term>Soil temperature</term>
<term>Soil type</term>
<term>Soil uptake</term>
<term>Soil uptake model</term>
<term>Soil uptake model figure</term>
<term>Soil water content</term>
<term>Soil water content effect</term>
<term>Soil water content function</term>
<term>Soil water fraction</term>
<term>Solid line</term>
<term>Southern hemisphere</term>
<term>Southern regions</term>
<term>Temperature dependency</term>
<term>Tropical america</term>
<term>Tropical asia</term>
<term>Tropical regions</term>
<term>Uptake</term>
<term>Uptake trend</term>
<term>Vegetation model</term>
<term>Volumetric soil water content</term>
<term>Yonemura</term>
<term>consumption</term>
<term>cycles</term>
<term>depth</term>
<term>description</term>
<term>diffusion</term>
<term>dynamics</term>
<term>global</term>
<term>hydrogen</term>
<term>inverse problem</term>
<term>models</term>
<term>soils</term>
<term>temperature</term>
<term>vegetation</term>
<term>water content</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Consommation</term>
<term>Couverture neige</term>
<term>Cycle</term>
<term>Description</term>
<term>Diffusion</term>
<term>Dynamique</term>
<term>Etude en laboratoire</term>
<term>Hydrogène</term>
<term>Modèle</term>
<term>Monde</term>
<term>Problème inverse</term>
<term>Profondeur</term>
<term>Sol</term>
<term>Température</term>
<term>Teneur eau</term>
<term>Végétation</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Artificial increase</term>
<term>Atmospheric hydrogen</term>
<term>Atmospheric inversion</term>
<term>Atmospheric methane</term>
<term>Auxiliary material</term>
<term>Biological oxidation</term>
<term>Biological processes</term>
<term>Biological uptake</term>
<term>Bousquet</term>
<term>Climate change</term>
<term>Climatic data</term>
<term>Climatic inputs</term>
<term>Corresponding grid cells</term>
<term>Deposition</term>
<term>Deposition velocities</term>
<term>Deposition velocity</term>
<term>Different scenarios</term>
<term>Downey</term>
<term>Ehhalt</term>
<term>Field measurements</term>
<term>Fossil fuel combustion</term>
<term>Full model sensitivity</term>
<term>Geographical distribution</term>
<term>Geophys</term>
<term>Global</term>
<term>Global biogeochem</term>
<term>Global distribution</term>
<term>Global estimate</term>
<term>Global model</term>
<term>Global scale</term>
<term>Global soil</term>
<term>Global soil uptake</term>
<term>Global trend</term>
<term>Global uptake</term>
<term>Good agreement</term>
<term>Grid</term>
<term>Grid cell</term>
<term>Grid cells</term>
<term>Heidelberg site</term>
<term>Hydrogen economy</term>
<term>Imperial college</term>
<term>Inactive layer</term>
<term>Interannual variability</term>
<term>Inversion</term>
<term>Inversion method</term>
<term>January</term>
<term>July</term>
<term>Kmax</term>
<term>Laboratory conditions</term>
<term>Laboratory experiments</term>
<term>Laboratory measurements</term>
<term>Lallo</term>
<term>Large range</term>
<term>Loamy sand soil type</term>
<term>Loppi</term>
<term>Loppi site</term>
<term>Lower values</term>
<term>Maximum uptake</term>
<term>Methane</term>
<term>Mineral soil</term>
<term>Minimum uptake</term>
<term>Model outputs</term>
<term>Model results</term>
<term>Model simulations</term>
<term>Molecular hydrogen</term>
<term>Molecular hydrogen uptake</term>
<term>Morfopoulos</term>
<term>Northern hemisphere</term>
<term>Northern regions</term>
<term>Other land areas</term>
<term>Period soil water</term>
<term>Personal communication</term>
<term>Porosity</term>
<term>Primary productivity</term>
<term>Recent study</term>
<term>Region partition</term>
<term>Same period</term>
<term>Same range</term>
<term>Scenario</term>
<term>Seasonal cycle</term>
<term>Seasonal variation</term>
<term>Seasonal variations</term>
<term>Sensitivity test</term>
<term>Sensitivity tests</term>
<term>Simple model</term>
<term>Simulation</term>
<term>Smith downey</term>
<term>Snow depth</term>
<term>Soil consumption</term>
<term>Soil model</term>
<term>Soil temperature</term>
<term>Soil type</term>
<term>Soil uptake</term>
<term>Soil uptake model</term>
<term>Soil uptake model figure</term>
<term>Soil water content</term>
<term>Soil water content effect</term>
<term>Soil water content function</term>
<term>Soil water fraction</term>
<term>Solid line</term>
<term>Southern hemisphere</term>
<term>Southern regions</term>
<term>Temperature dependency</term>
<term>Tropical america</term>
<term>Tropical asia</term>
<term>Tropical regions</term>
<term>Uptake</term>
<term>Uptake trend</term>
<term>Vegetation model</term>
<term>Volumetric soil water content</term>
<term>Yonemura</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Changement climatique</term>
<term>Consommation</term>
<term>Hydrogène</term>
<term>Répartition géographique</term>
<term>Simulation</term>
<term>Type de sol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A simple process‐based model for the consumption of atmospheric hydrogen (H2) has been developed. The model includes a description of diffusion and biological processes which together control H2flux into the soil. The model was incorporated into the LPJ‐WHyMe Dynamic Global Vegetation Model, and used to simulate H2 fluxes over the 1988–2006 period. The model results have been confronted with field and laboratory measurements. The model reproduces observed seasonal cycles of H2 uptake at different sites and shows a realistic sensitivity to changes in soil temperature and soil water content in comparisons with field and laboratory measurements. A recent study, based on 3D atmospheric model inversion, found an increase of the global H2 sink from soils, with a trend of −0.77 Tg a−2 for the 1992–2004 period (fluxes are negative as soils act as a sink for atmospheric H2). For the same period, however, our process‐based model calculates a trend of only −0.04 Tg a−2. Even when forced with drastic changes in soil water content, soil temperature and snow cover depth, our model is unable to reproduce the trend found in the inversion‐based study, questioning the realism of such a large trend.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>Royaume-Uni</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Gif-sur-Yvette</li>
</settlement>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Morfopoulos, C" sort="Morfopoulos, C" uniqKey="Morfopoulos C" first="C." last="Morfopoulos">C. Morfopoulos</name>
</noRegion>
<name sortKey="Foster, P N" sort="Foster, P N" uniqKey="Foster P" first="P. N." last="Foster">P. N. Foster</name>
<name sortKey="Friedlingstein, P" sort="Friedlingstein, P" uniqKey="Friedlingstein P" first="P." last="Friedlingstein">P. Friedlingstein</name>
<name sortKey="Morfopoulos, C" sort="Morfopoulos, C" uniqKey="Morfopoulos C" first="C." last="Morfopoulos">C. Morfopoulos</name>
<name sortKey="Morfopoulos, C" sort="Morfopoulos, C" uniqKey="Morfopoulos C" first="C." last="Morfopoulos">C. Morfopoulos</name>
<name sortKey="Prentice, I C" sort="Prentice, I C" uniqKey="Prentice I" first="I. C." last="Prentice">I. C. Prentice</name>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Bousquet, P" sort="Bousquet, P" uniqKey="Bousquet P" first="P." last="Bousquet">P. Bousquet</name>
</region>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Prentice, I C" sort="Prentice, I C" uniqKey="Prentice I" first="I. C." last="Prentice">I. C. Prentice</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005736 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005736 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:002B9FCAA688A5B3E72417AA8A3C3E26603364BB
   |texte=   A global model for the uptake of atmospheric hydrogen by soils
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024